Crossover:

Crossover is a genetic operator that combines (mates) two
chromosomes (parents) to produce a new chromosome
(offspring). The idea behind crossover is that the new
chromosome may be better than both of the parents if it takes
the best characteristics from each of the parents. Crossover
occurs during evolution according to a user-definable
crossover probability. Crossover selects genes from parent
chromosomes and creates a new offspring.

The Crossover operators are of many types. one simple way
is, One-Point crossover. The others are: Two Point, Uniform,
Arithmetic, and Heuristic crossovers.

The operators are selected based on the way chromosomes are
encoded.

One-Point Crossover:

One-Point crossover operator randomly selects one crossover
point and then copy everything before this point from the first
parent and then everything after the crossover point copy from

Lhei second parent. The Crossover would then look as shown
elow.

Consider the two parents selected for crossover.

I SN] 1011 00100110111¢

-] 1011 11000011110

Interchanging the parents chromosomes after the crossover
points -The Offspring produced are :

L Wp1 1011 11000011110
1 1011 00100110110

Note: The symbol, a vertical line, | is the chosen crossover
point.

29

Two-Point Crossover

Two-Point crossover operator randomly selects two crossover
points within a chromosome then interchanges the two parent
chromosomes between these points to produce two new
offspring.

Consider the two parents selected for crossover :

Parent 1 11011 0010011 0110
Parent 2 11011 1100001 1110

Interchanging the parents chromosomes between the crossover
points -The Offspring produced are :

LAl 1011 0010011 0110
L1 1011 0010011 0110

Uniform Crossover:
Uniform crossover operator decides (with some probability - know as the
mixing ratio) which parent will contribute how the gene walues in the
offspring chromosomes. The crossover operator allows the parent
chromosomes to be mixed at the gene level rather than the segment

level (as with one and two point crossover).

Consider the two parents selected for crossowver.

Parent 1 i1 1100100110110
Parent 2 i1o1 111900011110

If the mixing ratio is 0.5 approximately, then half of the genes in the
offspring will come from parent 1 and other half will come from parent 2.
The possible set of offspring after uniform crossover would be:

Offspring 1 1,1, 0,1, 1, 1; 1, &, 0, 0, 0, 1, 1, 1, 1, O;

Offspring 2 13 1; 0; 13 1; 0 @ 1; 0 0: 1; 15 03 13 1 Oy

Mote: The subscripts indicate which parent the gene came from.

30

Arithmetic Crossover:

Arithmetic crossover operator linearly combines two
parent chromosome vectors to produce two new offspring
according to the equations:

Offspringl = a * Parentl + (1- a) * Parent?2
Offspring2 = (1 - a) * Parentl + a * Parent?2

where a is a random weighting factor chosen before each
crossover operation.

Consider two parents (each of 4 float genes) selected for
Crossover:

Parent1 (0.3) (1.4) (0.2) (7.4)
Parent2 (0.5 (4.5 (0.1) (5.6)

Applying the above two equations and assuming the
weighting factor a = 0.7, applying above equations, we get
two resulting offspring. The possible set of offspring after
arithmetic crossover would be:

Offspring1 (0.36) (2.33) (0.17) (6.87)

Offspring 2 (0.402) (2.981) (0.149) (5.842)
Assis. Prof. Dr. Ziyad Tariq Al-Ta'i

Heuristic Crossover:

Heuristic crossoer operator uses the fitness values of the two
parent chromosomes to determine the direction of the search.

The offspring are created according to the equations:
Offspringl = BestParent + r * (BestParent - WorstParent)
Offspring2 = BestParent

where r is a random number between 0 and 1.

It is possible that offspringl will not be feasible. It can happen
if r is chosen such that one or more of its genes fall outside of
the allowable upper or lower bounds. For this reason, heuristic
crossover has a user defined parameter n for the number of

31

times to try and find an r that results in a feasible chromosome.
If a feasible chromosome is not produced after n tries, the
worst parent is returned as offspringl.

Mutation:

After a crossover is performed, mutation takes place.
Mutation is a genetic operator used to maintain genetic
diversity from one generation of a population of
chromosomes to the next.

Mutation occurs during evolution according to a user-
definable mutation probability, usually set to fairly low
value, say 0.01 a good first choice.

Mutation alters one or more gene values in a chromosome
from its initial state. This can result in entirely new gene
values being added to the gene pool. With the new gene
values, the genetic algorithm may be able to arrive at better
solution than was previously possible.

Mutation is an important part of the genetic search, helps
to prevent the population from stagnating at any local
optima. Mutation is intended to prevent the search falling
into a local optimum of the state space.

The Mutation operators are of many type.

- one simple way is, Flip Bit.

-the Others are Boundary, Non-Uniform, Uniform, and
Gaussian.

The operators are selected based on the way chromosomes
are encoded .

32

&% Flip Bit
The mutation operator simply inverts the value of the chosen gene.

.e. 0 goestol and 1 goesto O.

This mutation operator can only be used for binary genes.

Consider the two original off-springs selected for mutation.

Original offspring 2 i1 011001001101 10

Invert the value of the chosen gene as 0 tol and 1 to 0

The Mutated Off-spring produced are :

Mutated offspring 2 110110110011 0100

Permutation Encoding

Crossover

Single point crossover - one crossover point is selected, till
this point the permutation is copied from the first parent,
then the second parent is scanned and if the number is not
yet in the offspring it is added

Note: there are more ways how to produce the rest after
crossover point

(123456789)+(453689721)=(123456897)
Mutation
Order changing - two numbers are selected and exchanged

(123456897)=>(183456297)

33

Value Encoding
Crossover

All crossovers from binary encoding can be used
Mutation

Adding a small number (for real value encoding) - to
selected values is added (or subtracted) a small number

(1.29 5.68 2.86 4.11 5.55)=> (1.29 5.68 2.73 4.22
5.55)

Tree Encoding
Crossover

Tree crossover - in both parent one crossover point is
selected, parents are divided in that point and exchange part
below crossover point to produce new offspring

Parent A Parent B Offspring

0) 0
SV ORI NE RPN IRNCY
Y @ © 2 ¥ 2

Mutation

Changing operator, number - selected nodes are changed

Crossover and Mutation Probability

There are two basic parameters of GA - crossover
probability and mutation probability.

Crossover probability says how often will be crossover
performed. If there is no crossover, offspring is exact

34

http://www.obitko.com/tutorials/genetic-algorithms/crossover-mutation.php#binary#binary

copy of parents. If there is a crossover, offspring is made
from parts of parents’ chromosome. If crossover
probability is 100%, then all offspring is made by
crossover. If it is 0%, whole new generation is made from
exact copies of chromosomes from old population (but
this does not mean that the new generation is the same!).
Crossover is made in hope that new chromosomes will
have good parts of old chromosomes and maybe the new
chromosomes will be better. However it is good to leave
some part of population survive to next generation.

Mutation probability says how often will be parts of
chromosome mutated. If there is no mutation, offspring
is taken after crossover (or copy) without any change. If
mutation is performed, part of chromosome is changed.
If mutation probability is 100%, whole chromosome is
changed, if it is 0%, nothing is changed.
Mutation is made to prevent falling GA into local
extreme, but it should not occur very often, because then
GA will in fact change to random search.

Other Parameters

There are also some other parameters of GA. One also
important parameter is population size.

Population size says how many chromosomes are in
population (in one generation). If there are too few
chromosomes, GA have a few possibilities to perform
crossover and only a small part of search space is
explored. On the other hand, if there are too many
chromosomes, GA slows down. Research shows that
after some limit (which depends mainly on encoding and
the problem) it is not useful to increase population size,
because it does not make solving the problem faster.

35

Parameters of GA

This chapter should give you some basic
recommendations if you have decided to implement your
genetic algorithm. These recommendations are very
general. Probably you will want to experiment with your
own GA for specific problem, because today there is no
general theory which would describe parameters of GA
for any problem.

Recommendations:

Recommendations are often results of some empiric
studies of GAs, which were often performed only on
binary encoding.

. Crossover rate
Crossover rate generally should be high, about 80%-
95%. (However some results show that for some
problems crossover rate about 60% is the best.)

. Mutation rate
On the other side, mutation rate should be very low.
Best rates reported are about 0.5%-1%.

. Population size
It may be surprising, that very big population size
usually does not improve performance of GA (in
meaning of speed of finding solution). Good population
size is about 20-30, however sometimes sizes 50-100 are
reported as best. Some research also shows, that best
population size depends on encoding, on size of
encoded string. It means, if you have chromosome with
32 bits, the population should be say 32, but surely two
times more than the best population size for
chromosome with 16 bits.

. Selection
Basic roulette wheel selection can be used, but
sometimes rank selection can be better. Check chapter
about selection for advantages and disadvantages.
There are also some more sophisticated method, which

36

http://www.obitko.com/tutorials/genetic-algorithms/selection.php
http://www.obitko.com/tutorials/genetic-algorithms/selection.php

changes parameters of selection during run of GA.
Basically they behaves like simulated annealing. But
surely elitism should be used (if you do not use other
method for saving the best found solution). You can
also try steady state selection.

Encoding

Encoding depends on the problem and also on the size
of instance of the problem. Check chapter about
encoding for some suggestions or look to other
resources.

Crossover and mutation type

Operators depend on encoding and on the problem.
Check chapter about operators for some suggestions.
You can also check other sites.

o Example 1:

Maximize the function f(x) = x* over the range of integers from 0., 31.

Note : This function could be solved by a variety of traditional methods
such as a hill-climbing algorithm which uses the derivative,
One way is to
Start from any integer x in the domain of f
- Evaluate at this point x the derivative f’
- Observing that the derivative is +ve, pick a new x which is at a small
distance in the +ve direction from current x

Repeat until x = 31

See, how a genetic algorithm would approach this problem ?

37

http://www.obitko.com/tutorials/genetic-algorithms/encoding.php
http://www.obitko.com/tutorials/genetic-algorithms/encoding.php
http://www.obitko.com/tutorials/genetic-algorithms/resources.php
http://www.obitko.com/tutorials/genetic-algorithms/resources.php
http://www.obitko.com/tutorials/genetic-algorithms/crossover-mutation.php
http://www.obitko.com/tutorials/genetic-algorithms/resources.php

. Devise a means to represent a solution to the problem :

Assume, we represent x with frve-digit unsigned binary integers.

. Devise a heunistic for evaluating the fitness of any particular solution :
The function f(x) i1s simple, so it 15 easy to use the f(x) value itself to rate
the fitness of a solution; else we might have considered a more simpler
heurstic that would more or less serve the same purpose.

. Coding - Binary and the String length :

GAs often process binary representations of solutions. This works well,
because crossover and mutation can be clearly defined for binary solutions.
& Binary string of length 5 can represents 32 numbers (0 to 31).

. Randomly generate a set of solutions :

Here, considered a population of four solutions. However, larger populations
are used in real applications to explore a larger part of the search. Assume,
four randomly generated solutions as : 01101, 11000, 01000, 10011,
These are chromosomes or genotypes.

. Evaluate the fitness of each member of the population :

The calculated fitness values for each individual are -

(@) Decode the individual into an integer (called phenotypes),
01101 —» 13; 11000 — 24; 01000 — 8 10011 — 19;

(b) Evaluate the fitness according to f{x) = x?,
13 — 169; 24 — 576; B — 64; 19 — 361.

(c) Expected count =N * Probi , where N is the number of
individuals in the population called population size, here N = 4.

Thus the evaluation of the initial population summanzed in table below .

String No Initial X wvalue| Fitness Prob i | Expected count
i Population [(Pheno | f{x) = x* |(fraction N * Prob i
[(chromosome) |types) of total)
1 01101 13 169 0.14 0.58
2 11000 24 S76 0.49 1.97
3 01000 a8 654 0,06 0.22
4 10011 19 36l 0.31 1.23
Total {sum) 1170 1.00 4.00
Average 2093 0.25 1.00
Max 376 0.49 1.97

Thus, the string no 2 has maximum chance of selection.

38

6. Produce a new generation of solutions by picking from the er:isl.:ing
pool of solutions with a preference for solutions which are better

suited than others:
We divide the range into four bins, sized according to the relative fitness of

the solutions which they represent.

Strings Probi | Associated Bin
01101 0.14 [0 ... 014
11000 0.49 |l].14 oo 063
01000 0.06 |l].ﬁ~3 v oo 0,69
10011 0.31 |l].ﬁ-'9 v oo 1000

By generating 4 uniform (0, 1) random values and seeing which bin they fall

into we pick the four strings that will form the basis for the next generation.

Random No| Falls into bin Chosen string
0.08 0.0 ... 0,14 01101
0.24 0.14 ... 0.63 11000
.32 0.14 ... 0.63 11000
0.87 0.69 ... 1.00 10011

7. Randomly pair the members of the new generation
Random number generator decides for us to mate the first two strings

together and the second two strings together.

8. Within each pair swap parts of the members solutions to create
offspring which are a mixture of the parents :
For the first pair of strings: 01101 , 11000
- We randomly select the crossover point to be after the fourth digit.
Crossing these two strings at that point yields:
01101 = 01101 = 01100
11000 = 11000 = 11001
For the second pairof strings: 11000 , 10011
- We randomly select the crossover point to be after the second digit.
Crossing these two strings at that point yields:
11000 = 11000 = 11011

10011 = 10011 = 10000

39

9. Randomly mutate a very small fraction of genes in the population :
With a typical mutation probability of per bit it happens that none of the bits

in our population are mutated.

10. Go back and re-evaluate fitness of the population (new generation) :
This would be the first step in generating a new generation of solutions,

However it is also useful in showing the way that a single iteration of the

genetic algorithm has improved this sample.

String No Initial (X value| Fitness | Probi |Expected count

Population |[Pheno | f{x) = x* |{fraction
(chromosome) [types) of total)

1 01100 12 144 0.082 0.328

2 11001 25 6235 0.336 1.424

3 11011 27 729 0.415 1.660

4 10000 16 256 0.145 0.580

Total (sum) 1754 1.000 4.000

Average 439 0.250 1.000

Max 729 0.415 1.660

Observe that :
1. Initial populations @ At start step 5 were
01101, 11000, 01000, 10011

After one cycle, new populations, at step 10 to act as initial population

01100,11001, 11011, 10000

2. The total fitness has gone from 1170 to 1754 in a single generation,
3. The algorithm has already come up with the sting 11011 (1.e x = 27) as

a possible solution.

40

